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Alternative Approximation for Stresses in Plate Structures
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An accurate nonlinear approximation for stresses caused by membrane and bending loads in plate structures
is presented. Although the approximation requires only a first-order sensitivity analysis, it is more accurate than
a simple linear Taylor series expansion of the stresses with respect to the design variables, or their reciprocals,
and is exact for statically determinate structures. It requires less computation, both in approximate analysis and
the corresponding sensitivity analysis, than other approximations with the same order of accuracy. The use of
this alternative approximation for plate stresses in the approximation concepts approach to structural optimiza-
tion results in very rapid design convergence. Examples of the structural optimization of plate structures subject
to stress constraints are presented to show the accuracy of this approximation.

Introduction

N the approximation concepts approach to structural opti-

mization, an approximate-analysis problem is created, usu-
ally based on a first-order sensitivity analysis of the actual
problem, and a new design is generated from an optimization
based on this approximate problem. Then an actual analysis is
performed on the new design, and a new approximate problem
is generated. This process is repeated until the design con-
verges. The rate of design:convergence is dependent on the
accuracy of the approximations of the design constraints.

A common approach used to generate these approximate
problems is to expand the design constraints and, possibly, the
objective function, in a linear Taylor series with respect to the
design variables or their reciprocals. Although this type of
approximation is simple, it is not very accurate for stress
constraints because it lumps together the effects of changes in
the element forces, due to load redistribution, and changes in
the element stress récovery parameters (membrane thickness,
bending stiffness, and fiber distance). The stress approxima-
tion presented in this work separates these effects and, there-
fore, is more accurate.

Background

In Ref. 1 the membrane stresses in plate elements were
approximated using Taylor series expansions with respect to
the reciprocal of the membrane thickness.
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where NDV is the number of design variables, the tilde de-
notes an approximate quantity, and the subscript zero denotes
the values associated with the actual analysis. The partial
derivatives are calculated at the actual analysis design. The
reciprocals of the membrane thicknesses can be thought of as
intermediate variables. Note that although the approximate
stresses are linear functions of the intermediate variables X,
they are nonlinear functions of the actual design variables. It
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was pointed out in Ref. 1 that this approximation is exact for
statically determinate structures. This is because the stress due
to membrane loading, in any direction, in a plate element is
just

m =N/t 2
where N is the membrane force in that direction. However,
using the reciprocal of the thickness as the intermediate vari-
able does not generate an exact approximation of bending
stresses in statically determinate structures. This is because the

bending stress is a function of the reciprocal of the square of
the thickness. Note that

op = (—Mz)/D 3
where
D =1¢/12 and Z=xt/2 “
so that
oy = =6M/t? &)

The force approximation method for stress constraints, which
was introduced in Ref. 2 for beam elements, was applied to
plate elements in Ref. 3. In this method the element forces,
both membrane and bending, are approximated using a Tay-
lor series expansion with respect to intermediate variables.
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where NIV is the number of intermediate variables. The inter-
mediate variables are chosen to be the membrane thickness ¢
and bending stiffness D. The approximate forces are used with
the exact values of the stress recovery parameters to calculate
the approximate stresses.
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Note that this approximation is exact for statically determi-
nate structures, even with bending, because the approximate
forces are exact. It also captures the cross coupling between
the changes in the element forces, due to load redistribution,
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and changes in the element stress recovery parameters. One
drawback associated with this approximation is that two
forces must be approximated for each stress. This also results
in the calculation and storage of twice as many derivatives.

It was shown in Ref. 4 that the stresses in beam elements
could be approximated by a Taylor series expanded with re-
spect to intermediate variables X, called generalized variables
in Ref. 4, consisting of the reciprocals of the element section
properties Z and the stress recovery parameters S as well as
shape design variables V. The stress at any point in a symmet-
ric beam loaded in biaxial bending and tension is
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The stress recovery parameters S are
cy C 1
Sy =—> Sy=—» S3=— 9
=7 2= 1= ©®
The reciprocals of the section properties Z are
Z, = 1 Zy=— Zy= 1 (10)
1 11 2= A 3= A

The intermediate variables for any beam element are just the
combination of both S and Z as well as V. Note that the
stresses are linear functions of S. Also note that the stresses
are linear functions of the element forces which are usually
close to being linear functions of Z. The derivatives of the
stress with respect to the stress recovery parameters, at the
current design point, are
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Note that only three derivatives with respect to the S terms exist
for each element stress that is being approximated. The partial
derivative of the stress with respect to the reciprocal of a
section property of any element in the structure is determined
from Eq. (8). Noting that the element forces are functions of
the reciprocal section properties, the partial derivative is
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It is seen that S can be thought of as local (element) inter-
mediate variables and that Z and V can be thought of as global
(structural) intermediate variables. Note that the derivatives
with respect to S are inexpensive to calculate since they do
not involve the global equations. Also note that although S;
and Z, have the same value, S; is a stress recovery parameter
and Z; is a reciprocal section property. It can be seen that the
beam stress approximation formulated using this set of inter-
mediate variables (S and Z) is exact for statically determinate
structures.

Approximate Stress Formulation
The development of the approximate plate stress formula-
tion will now be presented in detail. The state of stress at any
point in a plate is

{c}={N} 1/t —{M}z/D (13)
where )
Oy Nx Mx
{o} = gy (° (N} = Ny ’ (M} = My
Txy Ny M,,

where {N} and {M} are the forces, and z is the fiber distance
at this point. Defining the stress recovery parameters S as

1 -z
S =-> S, =— 14
1=7 2 =5 14

Eq. (13) can be rewritten as
{o} = {N]}S + (M}S, (15)

The reciprocals of the section properties of a plate are

Zi=—> Z,=— 16
1=7 2=7 (16)

Note that the stress in an element is a linear function of the
stress recovery parameters for the element and the forces in
the element, which are functions of the reciprocals of the
section properties of all of the elements. This can be stated as

{a} =FIS, N(Z, V), M(Z, V)] amn

The approximation of the stress in an element is the expansion
of the stresses in a first-order Taylor series with respect to the
intermediate variables X which are the combination of the
stress recovery parameters for the element S and the recipro-
cals of the section properties of all the elements Z
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where NE is the number of elements. The reciprocals of the
section properties were chosen as intermediate variables,
rather than the direct section properties, because the element
forces are usually close to being linear functions of these
quantities. In shape optimization the shape design variables V'
are also included in the intermediate variables and the term

NSDV
6{0}
vV, — Vi 19
El T 0 (19
where NSDV is the number of shape design variables, must be
added to Eq. (18).
The derivatives of the stresses w1th respect to the intermedi-
ate variables are
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Note that this approximation is exact for statically determi-
nate structures and captures the cross coupling between
changes in the element forces, due to load redistribution, and
changes in the element stress recovery parameters. It is of the
same order of accuracy of the approximation presented in
Eq. (7). The advantage over the approximation presented in
Eq. (7) is that only one vector of element stress derivatives
needs to be calculated and stored as opposed to two vectors of
element force derivatives.

The derivatives of the stress with respect to the intermediate
variables are calculated as follows. Rewriting Eq. (15) as

N(Z,
{o} = [S]{ ¢ V)}

M@, V) @n
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where

S S,
IS1= S hYS (22)
S S,

The element forces are

N(Z) V) _ )
{M(Z, V)} = [D@NBM{u(Z,V)}
= [D@YIBWVHTWM{u(Z,V)} @3

where [D] is the force-strain relationship matrix, [B] is the
strain-displacement matrix, {u }¢ are the displacements in the
element coordinate system, and [7] is the element coordinate
system transformation matrix. Defining [Q] as

{o} = [SIDIBIITI{u} = [Q1"{u} 24
a single stress component can be expressed as
o = {Qu}T{u) 25

The derivative of this stress component with respect to an
intermediate variable is

doi _3(Qi)T d{u}
X - ax {u} + (Q}7 X (26)
From
[K(Z, MI{uZ, V)] ={P(Z, V)} 27

where [K] is the global stiffness matrix and {P]} the global
load vector, the derivative of the displacement vector with
respect to an intermediate variable is

3uy (3P} BIK]
ax ~ Kl l( ax  ax {”}) %)
Substituting Eq. (28) into Eq. (26) gives
a0 9(Qe)” (3P} BIK]
X ax {u}+{ule( X " ax {u}> 29
where
{ie ) = [K17'(Qx ) 30

Equation (26) is used to calculate the derivatives of the stress
using the direct (state variable) method of sensitivity analysis,
or Eq. (29) can be used in the adjoint variable method of
sensitivity analysis. Note that if the adjoint variable method is
used, only one right-hand side must be solved for each stress.
The approximation presented in Ref. 3 requires two right-
hand sides, one for each force, for each stress when the
adjoint variable method is used.

If the principle, maximum shear, and von Mises stresses
need to be calculated, it can be done using the explicit relation-
ships
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Note that when a principle stress is calculated three stresses
must be approximated. If the method presented in Ref. 3 is
used, then six element forces must be approximated. If the
principle stresses in both the top and bottom surfaces of an
element must be calculated, then six stresses must be approxi-
mated. In this case the number of approximated quantities is
the same as for the method presented in Ref. 3.

Optimization Problem Statement
The optimization examples presented in this work are stated

as
minimize W[X(Y)] (32)
subject to
oymlX(Y)l = a,
and

Y=<y, =YY i=1,2,3,...,NDV

where W is either the mass or volume of the structure, ¢, the
allowable stress, X the intermediate variables, Y the design
variables, Y. and YV the lower and upper bounds on the
design variables, respectively, and NDV is the number of
design variables. Note that the intermediate variables are ex-
plicit functions of the design variables and that the shape
variables are both design variables and intermediate design
variables [see Eqgs. (18) and (19)].

Optimization Procedure

The overall optimization procedure used in this paper is as
follows.

1) Read in the input data and perform preprocessing.

2) Perform a finite element analysis of the structure.

3) Evaluate the objective function and constraints.

4) Perform a sensitivity analysis of the active and near
active stresses with respect to the intermediate variables.

5) Formulate and solve the approximate optimization prob-
lem. This will generate the next design.

6) Check for design convergence. If the new design is dif-
ferent from the old design then go to step 2.

The procedure for the solution of the approximate opti-
mization problem is as follows.

1) Calculate the values of the intermediate variables from
the design variables.

2) Evaluate the Taylor series approximations for the objec-
tive function and constraints.

3) Call the design optimization tools (DOT) optimizer’ to
determine the new values of the design variables. -

4) If the approximate optimization problem has converged
then go to step 6 of the overall approximate optimization, else
go to step 1 of the approximate optimization procedure.

Examples

Four examples are given here to demonstrate the accuracy
of the approximation. All of the examples were solved using
the GENESIS® structural optimization program.

Cantilevered Plate

This example consists of finding the minimum mass of the
20-element cantilevered plate shown in Fig. 1. The plate is

2 450in Ib

re
? X " /
. 10" 1

Fig. 1 Cantilevered plate.
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loaded with a 450.0-in.-1b. moment at the tip and has material
properties of E = 10.0E6 psi, » = 0.3, and p = 0.298 Ib/in.>.
The 20-element thicknesses are the design variables. The initial
element thicknesses are all 1.0 in. There is a displacement
constraint on the tip of 0.5 in. and bending stress constraints
on the elements of 30,000 psi.

The analytical solution to this problem was obtained in
Ref. 7. This problem is statically determinate if a beam model
is used and nearly statically determinate with the plate model.
Therefore, approximations of the displacement with respect to
the reciprocals of the section properties and element forces
and the corresponding element stresses with respect to the
intermediate variables are nearly exact. The design cycle his-
tory for this problem is shown in Table 1. Note that the
optimum design is achieved in essentially one design cycle. In
Table 2 the final design is compared to the analytic solution
found in Ref. 7. Note that the same design was generated in
Ref. 3.

Cantilevered Shell

This example consists of finding the minimum volume of
the cantilevered shell shown in Fig. 2. The shell has a uni-
formly distributed load of a total of 7848 Ib applied to the free

Table 1 Design cycle history—cantilevered plate

Present method Ref. 3
Maximum Maximum
Design Objective constraint Objective constraint
cycle function violation, % function violation, %
0 2.980 0.0 2.980 0.0
1 1.076 0.0 1.076 0.0
2 1.074 0.0 1.074 0.0

Table 2 Final design variables—cantilevered plate

Variable Value Ref. 3 Ref. 7
1 0.430 0.430 0.431
2 0.424 0.424 0.426
3 0.418 0.418 0.420
4 0.412 0.412 0.413
5 0.406 0.406 0.407
6 0.399 0.399 0.400
7 0.392 0.392 0.393
8 0.385 0.385 0.386
9 0.377 0.377 0.378

10 0.369 0.369 0.369

11 0.360 0.360 0.360

12 0.350 0.350 0.350

13 0.340 0.340 0.340

14 0.328 0.328 0.328

15 0.315 0.315 0.314

16 0.300 0.300 0.300

17 0.300 0.300 0.300

18 0.300 0.300 0.300

19 0.300 0.300 0.300

20 0.300 0.300 0.300

Mass 1.074 1.074 1.075

Table 3 Design cycle history—one variable cantilevered shell

Present method Ref. 3
Maximum Maximum

Design Objective constraint Objective constraint
cycle function violation, % function violation, %
0 78.5 142.2 78.5 142.2

1 90.1 40.3 92.1 39.0

2 100.6 7.4 101.4 7.0

3 103.4 0.2 104.1 0.1

4 103.6 0.0 104.2 0.0

Fig.2 Cantilevered shell.

Fig. 3 Cantilevered shell model.

end, and material properties of E = 2.9E7 psi and »=0.3.
The half-model of structure shown in Fig. 3 was used with
symmetric boundary conditions for the optimization. This
model has 12 elements along the 90-deg arc and 48 elements
along the length of the structure. Initially the shell thickness is
1.0 in. and the radius of each end is 2.5 in. The von Mises
stress on the top and bottom of each element is constrained to
be less than 10,000 psi. The initial structure has constraints

- that are violated by 142.2%.

Two different optimization problems were solved with this

“ example. In the first the only design variable is the radius of

the fixed end. The optimum design is achieved in only four
design cycles and has a volume of 103.6 in.>. The optimum
radius of the fixed end is 4.10 in. The design cycle history for
this problem is shown in Table 3. This problem was solved in
Ref. 3 in four design cycles with an optimum radius of 4.06 in.
This problem was solved in Ref. 8 using seven finite element
analyses with an optimum radius of 4.17 in.

In the second design problem both the fixed and free end
radii are design variables as well as the shell thickness. In this
case the optimum design is still achieved in only four design
cycles and has a volume of 81.5 in.3. The optimum radii of the
fixed and free ends are 5.14 and 1.63 in., respectively. The
optimum thickness is 0.72 in. In Ref. 3 the problem was solved
also in four design cycles and had a volume of 80.9 in.3, radii
of the fixed and free ends of 5.15 and 1.61 in., respectively,
and thickness of 0.72 in. The design cycle history for this
problem is shown in Table 4. A simplified version of this
problem was solved in Ref. 8 using 22 finite element analyses.
In this version of the problem, the load is proportional to the
radius of the free end, causing the design variable for the
radius of the free end to go to its lower bound.

In Fig. 4 the approximate von Mises stress in one of the
elements is compared to the acutal stress variation in the
element from the initial design to the final design of the three
design variable model. In this figure 0 represents the initial
design and 1 the final design. The approximation is formed at
the initial design point. Note that the approximation captures
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Fig. 5 Plate with a hole.

the change in curvature of the actual variation of the stress.
Also shown in the figure is the approximate stress from the
method presented in Ref. 3. It is shown that both approxima-
tions perform well in capturing the nonlinear reponse of the
stress to the changes in the three design variables.

Plate with a Hole

This example consists of finding the minimum mass of the
square plate loaded by unbalanced biaxial tension. A quarter
model, shown in Fig. 5, is used due to symmetry. The plate is
20.0 in. on the side and has an initial thickness of 0.15 in. The
initial radius of the hole is 2.0 in. The plate is loaded with
distributed loads of 900.0 and 450.0 Ib/in. on the X and Y
edges, respectively, and has material constants of E = 2.9E7,
»=10.3, and p = 0.283 1b/in.3. The von Mises stress in each
element is constrained to be less than 10,000 psi.

>

X
Fig. 6 Final design of plate with a hole.

Table 4 Design cycle history—three variable cantilevered shell

Present method Ref. 3

Maximum Maximum
Design Objective constraint Obijective constraint
cycle function violation, % function violation, %
0 78.5 142.2 78.5 142.2
1 82.3 23.6 69.2 66.8
2 81.7 4.1 78.8 14.1
3 81.9 0.2 80.4 1.9
4 81.5 0.0 80.9 0.0

Table 5 Design cycle history—plate with a hole

Present method Ref. 3

Maximum Maximum
Design Objective constraint Objective constraint
cycle function violation, % function violation, %
0 4,112 393 4.112 39.3
1 4.371 0.0 4.365 0.0
2 3.794 0.0 3.794 0.0
3 3.790 0.0 —_— _

This example has both shape and sizing design variables.
The sizing design variable is the thickness of the plate. Four
shape design variables are used to control the shape of the
hole. The initial design has a mass of 4.11 1b and a maximum
constraint violation of 39.3%. The optimum design is found
in just three design cycles and has a mass of 3.79 Ib. The
optimum shape is shown in Fig. 6 and has a thickness of 0.139
in. Essentially, the same design was achieved in two design
cycles in Ref. 3. The design cycle histories are shown in Table
5. Simplified plate with hole problems, in which there was no
thickness design variable and the plates were loaded with
balanced biaxial tension to produce a circular hole, were
solved in Ref. 9 and required 6-11 iterations.

Conclusions

The stress approximation presented in this work is more
accurate than a direct approximation of the stress in a linear
Taylor series with respect to the design variables or their
reciprocals. This is because it captures coupling between
changes in the element forces, due to load redistribution, and
changes in the element stress recovery parameters. This ap-
proximation is exact for statically determinate structures. The
accuracy of the approximation is due to the set of intermediate
variables used in the Taylor series. The use of this accurate
and nonlinear approximation leads to rapid design conver-
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gence in both shape and sizing optimization problems. This
approximation is of the same order of accuracy of the approx-
imation presented in Ref. 3, but requires the calculation and
storage of one-half as much sensitivity information. In the
case where principle stresses are approximated on both the top
and bottom surfaces of the element, the same amount of
sensitivity information is required for both approaches.
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